首页 > 热点新闻

干货 :深入浅出之推荐系统原理应用介绍

来源:互联网 编辑:六分新闻网 时间:2017-01-07 16:01:33 违规或侵权举报文章 阅读:

导读 : 关联阅读(对阅读本文有帮助,点标题进入):写在正文之前最近在做推荐系统,在项目组内做了一个分享。今天有些时间,就将逻辑梳理一遍,将ppt内容用文字沉淀下来,便于接下来对推荐系统的进一步研究。推荐系统确实...

关联阅读(对阅读本文有帮助,点标题进入)

写在正文之前

最近在做推荐系统,在项目组内做了一个分享。今天有些时间,就将逻辑梳理一遍,将ppt内容用文字沉淀下来,便于接下来对推荐系统的进一步研究。推荐系统确实是极度复杂,要走的路还很长。

A First Glance

为什么需要推荐系统——信息过载

随着互联网行业的井喷式发展,获取信息的方式越来越多,人们从主动获取信息逐渐变成了被动接受信息,信息量也在以几何倍数式爆发增长。举一个例子,PC时代用google reader,常常有上千条未读博客更新;如今的微信公众号,也有大量的红点未阅读。垃圾信息越来越多,导致用户获取有价值信息的成本大大增加。为了解决这个问题,我个人就采取了比较极端的做法:直接忽略所有推送消息的入口。但在很多时候,有效信息的获取速度极其重要。

 

由于信息的爆炸式增长,对信息获取的有效性,针对性的需求也就自然出现了。推荐系统应运而生。

亚马逊的推荐系统

最早的推荐系统应该是亚马逊为了提升长尾货物的用户抵达率而发明的。已经有数据证明,长尾商品的销售额以及利润总和与热门商品是基本持平的。亚马逊网站上在线销售的商品何止百万,但首页能够展示的商品数量又极其有限,给用户推荐他们可能喜欢的商品就成了一件非常重要的事情。当然,商品搜索也是一块大蛋糕,亚马逊的商品搜索早已经开始侵蚀谷歌的核心业务了。

在亚马逊的商品展示页面,经常能够看见:浏览此商品的顾客也同时浏览。

这就是非常典型的推荐系统。八卦一下:”剁手族”的兴起,与推荐系统应该有一定关系吧,哈哈。

推荐系统与大数据

大数据与云计算,在当下非常热门。不管是业内同事还是其他行业的朋友,大数据都是一个常谈的话题。就像青少年时期热门的话题:“性”。大家都不太懂,但大家都想说上几句。业内对于大数据的使用其实还处于一个比较原始的探索阶段,前段时间听一家基因公司的CEO说,现在可以将人类的基因完全导出为数据,但这些数据毫无规律,能拿到这些数据,但根本不知道可以干什么。推荐系统也是利用用户数据来发现规律,相对来说开始得更早,运用上也比较成熟。

冷启动问题

推荐系统需要数据作为支撑。但亚马逊在刚刚开始做推荐的时候,是没有大量且有效的用户行为数据的。这时候就会面临着“冷启动”的问题。没有用户行为数据,就利用商品本身的内容数据。这就是推荐系统早期的做法。

基于内容的推荐:

  1. tag 给商品打上各种tag:运动商品类,快速消费品类,等等。粒度划分越细,推荐结果就越精确

  2. 商品名称,描述的关键字 通过从商品的文本描述信息中提取关键字,从而利用关键字的相似来作推荐

  3. 同商家的不同商品 用户购买了商店的一件商品,就推荐这个商店的其他热销商品

  4. 利用经验,人为地做一些关联 一个经典的例子就是商店在啤酒架旁边摆上纸尿布。那么,在网上购买啤酒的人,也可以推荐纸尿布?

由于内容的极度复杂性,这一块儿的规则可以无限拓展。基于内容的推荐与用户行为数据没有关系,在亚马逊早期是比较靠谱的策略。但正是由于内容的复杂性,也会出现很多错误的推荐。比如:小明在网上搜索过保时捷汽车模型。然后推荐系统根据关键字,给小明推荐了价值200万的保时捷911......

用户行为数据—到底在记录什么

在游戏里面,我们的人物角色是一堆复杂的数据,这叫做数据存储;这些数据以一定的结构组合起来,这叫做数据结构。同样地,在亚马逊眼里,我们就是一张张表格中一大堆纷繁复杂的数字。举一个栗子:

标签 : 干货是什么意思,海鲜干货,干货批发市场,沙虫,南北干货,干活,象拔蚌,干货分享,牛人干货,牛人干货neohuo

●【往下看,下一页更精彩】●
更多
评论

关于六分网 联系我们 网站地图 版权声明 友情链接 手机版

本站不提供任何文字及视听上传服务

所有内容均来自网站/手机分享站点所提供的公开引用资源,版权归原作者所有.

黔ICP备16003531号-2